Name of the Programme			Master of Science in Physics		
Short Name of the Programme			MSc Physics		
Code of the Programme			рнү		
	PROGRAMME OUTCOMES - POs				
SI. NO	CO No:	Programme Outcomes			
1	PO 1	Acquire the ability to apply the basic principles of logic and science to thoughts, actions and interventions.			
2	PO 2	Perceive knowledge as a comprehensive, interrelated and integrated faculty of the human mind.			
3	PO 3	Generate hypothesis and articulate assent or dissent by employing both reason and creative thinking.			
4	PO 4	Develop the ability to chart out a progressive direction for actions and interventions by learning to recognize the presence of hegemonic ideology within certain dominant notions.			
5	PO 5	Develop self-critical abilities and the ability to view positions, problems and social issues from plural perspectives.			
6	PO 6	Participate in nation building by adhering to the principles of scientific temper, sovereignty, socialism, secularism, democracy and the values that guide a republic.			
7	PO 7	Develop gender sensitive attitudes, environmental awareness, the ability to understand and resist various kinds of discriminations and empathetic social awareness about various kinds of marginalization.			
8	PO 8	Understand the issues related to the current environmental problems and apply the principles of science for a sustainable development in an interdisciplinary manner.			
9	PO 9	Develop communication skill in English and local languages through different media.			
10	PO 10	Learn to articulate analysis, synthesis, and evaluation of situations and themes in a scientific manner.			
11	PO 11	Develop aesthetic, social, humanistic and artistic sensibilities for problem solving and evolving a comprehensive perspective.			
12	PO 12	Attain a high level of scientific excellence, and develop hand-pick and apply appropriate techniques, resources and modern technologies for sustainable development.			
PROGRAMME SPECIFIC OUTCOMES - PSOs					
SI. NO	CO No:	Programme Specific Outcomes			
1	PSO 1	Aquire A Comprehensive Knowledge In Physics.			
2	PSO 2	Will develop a broad understanding of the physical principles of the universe.			
3	PSO 3	Acquire laboratory skills to design advanced experiments and high precision measurements.			
4	PSO 4	Be proficient in computing and interfacing techniques.			
5	PSO 5	Be empowered for critical thinking and innovation in dealing with scientific problems and experiments.			
6	PSO 6	Develop advanced laboratory techniques and instrumentation skills for a career in research.			
7	PSO 7	Develop independent research skills through projects.			
8	PSO 8	Be provided with opportunities to further their knowledge in frontier areas through elective courses.			
9	PSO 9	Be empowered for planning career in physical sciences and also in taking up jobs in other fields in the contemporary society.			
10	PSO 10	Be able to communicate effectively and participate actively in team work.			

COURSE OUTCOMES - COs				
Semester	Course code	Course Title	CO No:	Course Outcomes
			CO1	Explain the fundamental concepts in Lagrangian and Hamiltonian formulation in mechanics.
	PHY1C01	CLASSICAL MECHANICS	CO2	Apply the concepts of Lagrangian, Hamiltonian, Action, Poisson brackets, canonical tranformations and their subsequent development to Heisenberg's matrix mechanics and Schrodinger's wave mechanics, to carry out numerical problems
			CO3	Develop the analytical and mathematical skills for describing the dynamics of rigid bodies. It could be applied to practical situations. This can be applied spectroscopic analysis of samples.
			CO4	Explain the theory of small oscillations. Small oscillations are part and parcel of all bound physical systems.
1			CO5	Elucidate the concepts in nonlinear dynamics and chaos. These techniques can be directly applied in nonlinear physics and also to verify various experimental results.
	PHY1C02	MATHEMATICAL PHYSICS – I	CO1	Describe coordinate systems appropriate for different physical problems. Applies it to solve Laplace's equation in different coordinate systems
			CO2	Peform transformation operations and get the corresponding transformation matrices. Learns procedures for matrix diagonalisation.
			CO3	Distinguish the class of objects called tensors, their classifications and use.Understand differential equations of special nature and the ways to solve them
			CO4	identify differential equations of special nature and the ways to solve them
			CO5	Illustrate special functions as solutions to problems in atomic, molecular nuclear, and solid state physics etc. and will put them in use.
			CO6	Distinguish Fourier series and integral transforms of different types and their properties. This will enable him/ her to analyse or solve different mathematical problems in physical sciences
			CO1	Explain the significance of displacement current and Maxwell's equations and general electromagnetic wave equations, their solutions in terms of potentials and fields. Another basic concept of physics called gauge transformation will be understood. Multipole expansion of the potentials, fields and multipole moments of different orders will be learned
	PHY1C03	ELECTRODYNAMICS AND PLASMA PHYSICS	CO2	Describe the propagation of electromagnetic waves through free space and the consequences of reflection from different types of boundaries. These have important consequences in wave propagation.
			CO3	Discusses propagation of electromagnetic waves through confined media like wave guides and cavity resonators.

				Enables to appreciate the magnificent results of the
			CO4	blending of relativity and electrodynamics and motivates to
				take up a course on quantum field theory, the study of
				fields, interactions and symmetries.
			CO5	Understand the criteria for a medium to be called plasma
				and the various properties of it.
			CO1	Analyse characteristics of JFET and MOSFET and their
				specific applications.
		ELECTRONICS	CO2	Distinguish the basic characteristics of light emitting and
				light sensing devices and illustrate the basic concepts
				behind integrating electronic and photonic devices suitably
	PHY1C04			for microwave communication.
			603	Classify characteristics of op-amps and their
				implementation in various elementary level applications
			CO4	Identify the basics of logic gates, flip flops and registers and
				the designing of counters, satisfying specific conditions.
				Understands RAM and D/A converter and basic features of
				specific microprocessors
				Appreciate the importance and implication of vector
				spaces. Will be able to use Dirac ket and bra notations. Use
			CO1	operators and will be able to solve eigen value problems.
				Understand generalized uncertainty principle in quantum
	РНҮ2С05			mechanics and the need for quantum mechanical
				formalism and its basic principles
				Explain time evolution of quantum mechanical systems and
				learn different time Explain time evolution of quantum
			CO2	mechanical systems and learn different time
				evolution approaches -Schrodinger picture and Heisenberg
				picture. Apply different
				approaches in quantum dynamics to various fundamental
		QUANTUM		problems.
		MECHANICS-I		Develop a better understanding of the mathematical
			CO3	foundations of spin and angular momentum. Make use of
				spherical harmonics to compute Clebsch - Gordon
				coefficients.
			CO4	Apply Schrodinger's equation to central potentials
				problems, to solve various quantum mechanical problems
				: Understand invariance principles based on symmetry of
				the system and establish the associated conservation laws.
			0.05	These quantum mechanical concepts will be applied to
			05	analyse the ground state of Helium atom. Here it will be
				understood that all symmetry elements possess the
				mathematical property of groups.
		MATHEMATICAL PHYSICS-II		In general, physical phenomena are expressed in equations
			CO1	involving complex quantities. Some times we get complex
				solutions to equations. Solving such problems requires
				special procedures. On completing this module he/she will
				be gain the skill for solving and interpreting such problems.
				Acquire a preliminary training in group theory. All symmetry
			CO2	elements possess the mathematical property of groups.
2	PHY2C06			Concepts of group theory will help to solve problems in
L				quantum mechanics. It is quantum mechanics that gives
				more stress on symmetry than classical mechanics.
				,,

			CO3	Apply the techniques of calculus of variation to diverse problems in physics.
			CO4	Apply the Greens function technique to solve problems
				showing causality relationships.
				Understand macroscopic and the microscopic states,
				thermodynamic potentials, basic concepts of entropy,
			CO1	Liouville"s theorem and its consequences. Also the students
		STATISTICAL		will have an understanding of the connection between
	PHY2C07	MECHANICS		statistics and thermodynamics.
			CO2	Have a detailed understanding different canonical
				ensembles
			CO3	Develop an understanding of the statistical behavior of
				Bose-Einstein and Fermi
			CO1	Write computer programs using core python
				Use advanced mathematical modules like Numpy and Pylab
			CO2	in python program for solving mathematical and physical
				problems and also to present the result visually using
				graphs and charts.
				Solve numerically mathematical problems like interpolation,
			CO3	curve fitting, integration etc. and to write python programs
		COMPUTATIONAL		for these.
	PHY2C08	PHYSICS		Solve numerically mathematical problems like differential
			CO4	equations, Fourier transforms etc. and also to write python
				program for these.
				Analyse by simulating simple physical problems in physics
				like one-dimensional and two-dimensional motion,
			CO5	harmonic oscillator, radio active disintegration,
				chaos, solution of Schrodinger equation etc., using python
				programs by applying the knowledge acquired for the
				course.
			CO1 CO2	Understand time independent perturbation theory and to
				apply it to harmonic and anharmonic oscillators, and learn
		QUANTUM MECHANICS –II		the fine structure and hyperfine splitting of Hydrogen atom
				in the presence of external magnetic and electric fields.
				Apply methods like Ritz variational technique and WKB
				approximation to quantum mechanical systems.
				Interpret time dependent perturbation theory and apply it
	PHY3C09		CO3	to describe radiative transitions in atoms. Understand
				Fermi's Golden rule and learn Born approximation.
				Explain the theory of scattering and apply the method of
			CO4	partial waves to scattering by central potential and square
-				well potential.
				Identify the principles of relativistic quantum mechanics
			CO5	and apply to Dirac particles, Klein-Gordon equation. Also
			000	understand the concept of spinors and the non-relativistic
				limit and Hole theory.
				Interpret the properties of nucleus, binding energy, angular
			CO1	momentum, two nucleon scattering, spin dependence,
				tensor force, partial wave concept and the theory of
				deuteron structure.
				Elucidate the theory of various types of nuclear decay,
			CO2	selection rules of transition, concept of parity and multipole
				moments.
		-		

				Compare various nuclear models and nuclear processes like
3	PHY3C10	NUCLEAR AND PARTICLE	CO3	fission and fusion. Will be able to apply it to various nuclear
				systems in the chart of nuclides.
				Demonstrate the working of one or two nuclear radiation
			CO4	detectors of different types and the signal processing and
				analysing units.
				Compare basic interactions and classify the elementary
				particles. Interactions are linked with the concept of
			CO5	symmetry and conservation laws. Understand Sakata
				model. Gellmann- Okubo mass formula. Quark mode and
				their significance.
				Analyse the structure of materials based on X-ray diffraction
			CO1	and interpret it on the basis of the theory understood.
			CO2	Distinguish different excitations in crystals. Properties of
				quasiparticles could be explained. Arrive at proper
				explanation of for specific heat.
				Explain free electron model and interpret the properties of
			CO3	metals. Gain a deeper understanding of the energy bands
	PHY3C11	SOLID STATE PHYSICS		based on the properties of carriers.
				Interpret properly the thermal, electrical and magnetic
			CO4	properties of materials. Will enable the student to
				understand the current research going on in the related
				areas.
				Illustrate using phase diagrams, phase transitions in
			CO5	materials leading to superconductivity and different types
				of superconductors.
	PHY4C12	ATOMIC AND MOLECULAR SPECTROSCOPY	CO1	Understand the behavior of atoms and molecules and their
4				interactions with electromagnetic waves.
			CO2	Apply the behaviour of nonrigid rotor and understand the
				microwave spectroscopy
			CO3	Distinguish between Raman and IR spectroscopy and
				elucidate on the features of Raman spectrum.
			CO4	Explain electronic spectroscopy and applications
			CO5	Identify the structure of the sample from spin resonance
				and Mossbauer spectra